設計單位如何確定隔震橡膠支座的規格,對結構進行初步設計。假設該建筑上部結構通過使用設防來降低一度,也就是先假設—個水平向減震系數,用減震后的水平地震作用對結構進行初步設計。
因為我國目前受檢測能力的限制,無法對大型板式橡膠支座進行實體檢驗,相關技術資料也不能為此確定一個較為完善的技術數據和驗證條款,嚴格的講其技術數據的科學性和產品質量的符合性都無法確認和保證。
盆式橡膠支座采用焊連連接方式:當施工單位在建筑上下部構造在施工中,將盆式橡膠支座安裝位置應預埋比本系列支座頂、底板大的鋼板,并有可靠錨固措施。
按照設計要求,將隔震橡膠支座外露連接板、螺帽均應刷防銹漆兩遍,外罩防火涂料。按照橡膠支座拱上建筑的形式可以分為:實腹式拱橋,空腹式拱橋。按照橡膠支座主拱圈拱軸的形式可分為:圓弧拱橋,拋物線拱橋,懸鏈線拱橋等。按支座配套鋼板的設計要求,對支座的配套鋼板進行調整。按支座用材料分類:鋼支座(平板支座、弧形支座、搖軸支座和輥軸支座〉:詼支座的傳力通過鋼的接觸而。案例一:博盧高架橋1號線概況案列參考:減隔震技術項目凹凸不超過2MM,面積不超過50MM2,不得多于3凹凸不超過2MM,面積不超過50MM2,不得多于3處八、混凝土結構節點構造詳圖把盆式橡膠支座安裝在建筑墩墊石:首先設置安裝。搬運車吊運時,應檢查車體吊杠及鏈鉤安全,防止鏈斷杠折傷人;搬運時應輕起輕放,不得猛起重摔。板內可設置若干層用鋼絲網、薄鋼片做成的加勁物,以承受支座受壓時的水平拉力。
對于普通板式橡膠支座適用于跨度小于30M、位移量較小的建筑;不同的平面形狀適用于不同的橋跨結構,正交建筑用矩形支座;曲線橋、斜交橋及圓柱墩橋用圓形支座。
《規范》沒有對滑板橡膠支座下橋墩地震力的計算給出明確規定,如果根據摩擦力與橋墩自身地震力疊加并乘以相應的系數作為設計地震力,則存在可能得到的橋墩屈服強度低于滑板支座發生滑動的摩擦力,從而導致墩的屈服先于滑板支座發生滑動,這與預期的性能不一致;此外,由于存在滑板支座不發生滑動的可能,因此,設計中應根據滑板支座的實際情況進行橋墩相應的抗震設計,這是目前規范所沒有考慮的。
在地震不能被準確、及時預報的前提下,工程技術是防震減災有效、現實的手段。因此對建筑、建筑進行抗震設計是衡量一國造橋技術的重要指標,而減隔震技術作為一種有效的建筑物抗震技術,逐漸成為大型建筑結構抗震設計的重要選項。國外發達應用減隔震技術較早,如美國早在1984年就利用基礎隔震技術建造建筑,日本減隔震技術也走在前列。除防御地震震動外,減隔震裝置也可用于抵御建筑結構熱脹冷縮變形和荷載的變化,提高建筑結構的安全性和穩定性。
天然橡膠支座(LNR):由多層橡膠夾著鋼板構成,具有低水平剛度和高豎向剛度,適用于一般結構和重要結構。

還有從球型支座轉化來的網架支座產品球型拉壓支座,這類產品的轉角比較大,且受力面比較均勻,不產生力的頸縮。
上柱帽的兩側梁底縱筋直徑和方向相同時,可由一側的梁底縱筋穿過柱帽,在受力較小的區域(如距支座1/4跨度)與另一側梁底筋機械連接,每側接頭不超過50%,以減少節點區的鋼筋數量。
支座的分類按其變位的可能性:固定支座、活動支座固定支座指固定主梁在墩臺上的位置并傳遞豎向力和水平力,允許主梁發生撓曲,在支座處能自由轉動但不能水平移動,如1-1中的A;活動支座則只傳遞豎向力,允許主梁在支座處既能自由轉動又能水平移動。
摩擦系數:摩擦系數對支座的阻尼性能有較大影響,在確定了準確的曲率半徑基礎上,選取合適的摩擦系數才能有效地增加建筑的抗震性。
在一座建筑上各個位置所需選用的橡膠支座類型主要取決于下列因素:豎向荷載;水平荷載;位移要求;轉動要求;建筑的結構型式;建筑墩臺和上部構造的尺寸;各支點所需橡膠支座個數;地基條件以及基礎沉降的可能性;橋長。
公路建筑板式橡膠支座主要特點就是可以很好的將建筑上部結構反力可靠地傳遞給墩臺,還能適應梁端轉動及通過橡膠支座的剪切變形來適應大梁由溫差引起的伸縮變形。
還有從球型支座轉化來的網架支座產品球型拉壓支座,這類產品的轉角比較大,且受力面比較均勻,不產生力的頸縮。
解決方案如下:在吊梁前應檢查梁體和墩臺與板式橡膠支座相關聯處是否平行(因未考慮繼續增加恒載和汽車活載時在支座安裝處形成的傾角,故要求支座上下安裝面應盡量平行),如不符合應即時修整,應杜絕落梁后使用填塞楔形塊的解決方法。

板式橡膠支座安裝前應將墩、臺支座支墊處和梁底面清理干凈;應先檢查板式橡膠支座的中心位置、板式橡膠支座墊石頂面標高是否準確。
通過上面的介紹,我們對影響板式橡膠支座質量的因素有了一個大概的了解,我們今后再采購或者使用板式橡膠支座時,就要多關注這些因素。
還有利用球鉸原理制作的網架產品球鉸拉壓支座,這類產品的實現轉角一般為0.08弧度,抵抗水平力相對也大一些,但球鉸面的摩擦系數稍大,應當注意。
再者柔性連接在材料選用上也遇到一些問題,例如:工程選用Φ150排水金屬波紋軟管,雖然滿足了對地震位移的要求,但在實際使用中發現在水平段出現經常性的堵管,隔震橡膠支座使用造成困難。
在實際應用中,需根據具體的工程需求和結構特點,選擇合適類型和規格的摩擦擺隔震支座,并確保其設計、安裝和維護符合相關標準和規范,以充分發揮其隔震效果,提高建筑物的抗震安全性。摩擦擺隔震支座在建筑、橋梁等領域得到了廣泛應用。
暖通供排水管穿越隔震層時,宜采用柔性連接或其他有效措施,滿足罕遇地震下對排汽管應安裝牢固,位置正確,封閉嚴密。排汽屋面的排汽道應縱橫貫通,不得堵塞。拋物線拱橋:拱圈軸線按拋物線設置的拱橋,是懸鏈線拱橋的一種特例。配筋之高度至少要覆蓋滿預埋錨筋及預埋套筒的一半長度以上。配套的相關圖集(包括圖集的名稱、編號、年號和版本號)。配制環氧砂漿。配制方法見本標準3.2.1.4款拌制環氧砂漿的有關要求。盆式橡膠支座:盆式橡膠支座是將素橡膠置于圓形鋼盆內來加強橡膠。盆式橡膠支座GKPZ和GPZ有什么不同,哪個更貴?前者抗震后者普通盆座。盆式橡膠支座安裝①在支座設計位置處劃出中心線,同時在支座頂,底板上也標出中心線。盆式橡膠支座安裝步驟與注意事項盆式橡膠支座安裝前方可開箱,并檢查支座各部件及裝箱清單,盆式橡膠支座安裝前不得隨意拆卸支座。盆式橡膠支座采用不銹鋼板和聚四氟乙烯滑動面采用硅脂潤滑,可降低摩擦阻力。
球冠圓板式橡膠支座在平面上各向同性,并以球冠調節受力狀態,不但適用于一般建筑,也適用于各種布置復雜,縱橫較大的立交橋及高架橋,其坡度適用范圍為3~5%,也可根據不同坡度調整球冠半徑。
對于建筑物中的隔震設計隔震結構的抗震性能依賴于隔震層的設計,日本的隔震層設置位置主要有:基礎隔震:這是在日本使用比較廣泛的一種隔震技術,主要是在基礎和結構之間,安裝橡膠彈性墊或者摩擦滑動承重座等緩沖裝置。

本文從建筑結構振動能量傳遞角度出發,分析了高架橋縱橋向振動能量的傳遞過程及板式橡膠支座參數對建筑抗震性能的影響。
請關注:板式橡膠支座在什么情況下需要增加四氟滑板橡膠支座的安裝:在支座安裝之前應對支座的安裝位置進行測量檢驗,支座安裝平面應和支座的滑動平面或滾動平面平行,其平行度的偏差不宜超過2‰。
隔震支座施工組織設計,必須有安全技術措施,施工現場所有安全設施必須按照施工技術措施的規定和要求設置。隔震支座下部結構件鋼筋綁扎,并澆筑混泥土至下預埋板錨筋或預埋螺桿標高;隔震支座預埋件應符合現行有關標準、設計文件和施工方案的規定。隔震支座中心標高與設計標高的偏差不應大于5MM;隔震支座中心的平面位置與設計值位置的偏差不應大于5MM;各類鋼筋代碼說明,型鋼代碼及其截面尺寸標記說明;各類混凝土構件的環境類別及其外層鋼筋的保護層厚度;各特殊工種經培訓考試合格后持證上崗,嚴禁無證作業;各支承墊石頂面標高應符合設計要求。
板式橡膠支座的拉壓支座就是在支座中心設置一個拉力螺栓,將支座頂板和下滑板連接在一起,支座下滑板與底板及錨固扣板之間設置的不銹鋼與聚四氟乙烯板,這樣方便了支座縱向滑動。
隔震效果良好:具有類似于橡膠隔震支座的隔震效果,能有效延長結構自振周期,減少地震能量向上部結構的傳遞,避免下部墩柱在地震作用下發生塑性破壞。
地震綜合觀測基地由大連市建筑設計研究院設計,在建筑基礎部位加裝34個隔震支座,具備以下三方面優點:一是建筑隔震橡膠支座耐久性好,抗低周期疲勞性能、抗熱空氣老化、抗臭氧老化、耐酸性、耐水性均較好,其壽命可達80~100年,期間的隔震力學性能不會發生明顯變化;二是具有足夠的安全儲備,水平變形250%不會影響使用,另外具有足夠豎向承載力保證穩定的支撐建筑物,建筑隔震橡膠支座結構中的隔震層具有穩定的彈性復位功能,能在多次地震中自動瞬時復位;三是設計及施工方便,因建筑隔震橡膠支座的設計與配方科學合理,與傳統的抗震結構相比,上部結構的地震反應減小到前者的1/4~1/8左右,安全可靠度大大提高,建筑的設防目標一般可以提高一個設防等級;傳統的設防目標是小震不壞,中震可修,大震不倒,而隔震建筑能做到小震不壞,中震不壞或輕度損壞,大震不喪失使用功能,其潛在的經濟效益和社會效益十分可觀。
下面單就支座更換技術結合工程實例作以簡述:建筑橡膠支座的病害癥狀及原因分析1.建筑支座脫空:支座墊石和梁底鋼板不水平。
建筑摩擦擺隔震支座具有以下一些特點:



















