在實際應用中,需根據具體的工程需求和結構特點,選擇合適類型和規格的摩擦擺隔震支座,并確保其設計、安裝和維護符合相關標準和規范,以充分發揮其隔震效果,提高建筑物的抗震安全性。摩擦擺隔震支座在建筑、橋梁等領域得到了廣泛應用。
地震強度:地震強度越大,摩擦擺支座的最大水平滑動位移通常也會增加。
隔震支座是建筑上、下部結構的連接點,其作用是將上部結構的荷載(包括恒載和活載)順適、安傘地傳遞到建筑墩臺上,同時要保證上部結構在支座處能自由變形(轉動或移動),以便使結構的實際受力情況與計算簡圖相符合。因此,對建筑支座要合理設置,正確安裝,并經常注意保養維修,如有損壞要進行修補加固或更換。隔震支座按其作用分固定支座和活動支庵兩類。固定支摩用來同定建筑結構在墩臺上的位置,它只能轉動而不能移。一般設置在梁體固定位置;活動支座則可保證在溫度變化、混凝土收縮和荷載作用下結構能自由轉動和自由移動。
試驗還表明鉛芯橡膠支座不僅在大應變存在著小應變滯回特性,而且在小應變也存在著小應變滯回特性,目前現有的鉛芯橡膠支座恢復力模型中都沒有考慮加載時程基礎上的應變滯回特性,因此鉛芯橡膠支座這一特性在隔震建筑特別是高層或超高層隔震建筑設計中應該引起注意。
建筑隔震支座一般都是使用鉛芯橡膠隔震支座、天然橡膠隔震支座和高阻尼橡膠隔震支座三種,正常使用中鉛芯橡膠隔震支座、天然橡膠隔震支座較多。
這個時候為了克服這一缺點,可在用活動支座的橡膠板頂面貼一片聚四氟乙烯板,并且在聚四氟乙烯板與梁底之間墊上一塊光潔度很高的不銹鋼薄板,兩者之間的摩擦阻力極小(摩擦系數μ小于0.04),因此來用它增加支座位移的需要。
《規范》沒有對滑板橡膠支座下橋墩地震力的計算給出明確規定,如果根據摩擦力與橋墩自身地震力疊加并乘以相應的系數作為設計地震力,則存在可能得到的橋墩屈服強度低于滑板支座發生滑動的摩擦力,從而導致墩的屈服先于滑板支座發生滑動,這與預期的性能不一致;此外,由于存在滑板支座不發生滑動的可能,因此,設計中應根據滑板支座的實際情況進行橋墩相應的抗震設計,這是目前規范所沒有考慮的。
這種方式只適用于地下室和主樓平面基本一致的情況,如果地下室擴大較多,主樓范圍以外的隔震墊實際上只隔了一個地下室頂板,從經濟上和技術上都顯得不適宜。還有一個問題是因為隔震溝、隔震縫等構造的存在,結構不能完全封閉,這樣的隔震地下室不能作為人防地下室使用,能否通過戰時加固等手段來解決呢?可能需要和人防管理部門的溝通協調。地震和戰爭理論上也有極小的概率同時發生,這已經超出結構工程師正常考慮的范圍。

(圖一)LNR隔震支座600(II型)
建筑橡膠支座還可能出現銹蝕、偏位、墊石破損和雜物堆積等問題,治理時也必須分析其原因,并根據實際情況進行有針對性的治理。
支座的豎向壓縮變形不大于支座總高的2%,盆環的徑向變形不得大于盆環內徑的O.眺O,支座的摩擦系數不得大于0.05。
通過調整梁體各部標高、增加斜墊塊等技術措施解決,無論采取哪種措施,建議都經現場設計代表批準為好;可以橡膠支座型號選擇不合理及支座本身可能存在原因,建議重新進行支座實體檢測。
砌體結構無筋擴展基礎應繪出剖面、基礎圈梁、防潮層位置,并標注總尺寸、分尺寸、標高及定位尺寸。砌體結構有圈梁時應注明位置、編號、標高,可用小比例繪制單線平面示意圖;砌體墻的材料種類、厚度、成墻后的墻重限制;砌體墻上門窗洞口過梁要求或注明所引用的標準圖;砌體填充墻與框架梁、柱、剪力墻的連接要求或注明所引用的標準圖;千斤頂、百分表安放與設置千斤頂數量應與每個橋臺下的支座數量相同。
縱剖面、長度、定位尺寸、標高及配筋,梁和板的支座(可利用標準圖中的縱剖面圖);現澆預應力混凝土構件尚應繪出預應力筋定位圖并提出錨固及張拉要求;
圖D就是將圖C一側彈簧換成阻尼,依靠阻尼的耗能作用將房屋的簡諧振(震)動的幅度逐漸減小,直至停止,這樣既起到隔離地震的作用又限制了結構的過大水平位移,同時還可以防止房屋無休止的簡諧振(震)動,這就是隔震技術的演變過程。
梁體的水平位移主要由活動支座的橡膠剪切變形來完成,其高度則取決于水平位移量的大小。梁體降落過程,實際上與提升過程完全相逆,技術指標的控制完全相同。梁體就位后檢查支座上下鋼板與墊石、梁底之間的密貼情況,應盡量保證支座上下面全部密貼。梁支點承壓不均勻,支座出現脫空或過大壓縮變形時應進行調整。兩端為不分固定與活動端的支座時,兩者的厚度相同。
養護檢查時發現,不少建筑的盆式支座由于橡膠體的豎向壓縮變形大,支座的上壓板完全作用在鋼盆壁上,而失去橡膠支座的功能和作用,對梁體受力十分不利。

(圖二)橡膠鉛芯支座
此盆式橡膠支座具有很好的豎向承載力,在豎向設計荷載作用下,支座壓縮變形值小于支座總高度的2%,盆環上口徑向變形小于盆環外徑的0.5%,支座殘余不超總變形量的5%,還具有很好的水平承載力,在固定支座在各方向和單向活動支座非滑移方向的水平承載力均大于支座豎向承載力的10%。
計算水平減震系數跟選波有關,盡管規范給定選波條件,但仍然存在較大的空間。規范要求的反應譜上統計意義相符,如果要求按照隔震周期前三周期選取,那應用在抗震結構上不合理,如果用抗震周期前三周期也不合理,一般做法分別取前三周期,即6個周期點選取地震波,但這樣對找天然波是非常麻煩的,因為隔震周期一般較大,天然波反應譜在長周期段一般下降較多,而規范反應譜在長期周期段抬高了,導致天然波難選。但總之,無論是三條包絡還是7條平均,工程師對此的操作空間都非常大。
多跨連續直梁橋在多跨結構中,橡膠支座的作用更為重要,因為結構的多跨連續要求較大的伸縮位移量,在這種結構中通常應使用金屬橡膠支座,但在年溫差和濕度差很小的情況下,仍可采用橡膠橡膠支座。
空心板粱更換支座型號同原設計型號,仍采用TCYB型球冠圓板式橡膠支座;組合箱梁更換支座采用定做的同厚度GYZ型圓板式橡膠支座。
維修管理成本低(無需其他阻尼裝置);位移量的計算要考慮各種可能出現的上況,對溫度產生的位移,要有足夠的估計。溫度作用及地下室水浮力的有關設計參數。穩定后對每車膠料進行力學性能常規檢測。我公司建議凡建筑均一律使用橡膠支座,只有這樣,我們才有可能避免地震風暴的來臨。我國早的隔震建筑是1993年建造的汕頭陵海路八層框架結構商住樓以及安陽市糧油綜合樓。我國早使用板式橡膠支座的是廣東肇慶的公路建筑,至今已有40多年的使用歷史。我國《高層建筑混凝土結構技術規程》(JGJ3—20將性能目標由高到低分為A、B、C、D四級(見表。我國的港珠澳大橋,在橡膠支座的生產工藝上已經具備了國際水準,實現了多項指標的極限突破。
本工程用到的橡膠隔震支座的數量較多,使用部位為、建筑物地圈梁與6條形基礎之間。橡膠隔震支座在本工程的構造由三部分組成:下支墩、橡膠隔震支座、上支墩。橡膠支座通過預埋板用高強螺栓等連接件與上下支墩相連。主樓內隔震層層高為650M,隔震支座的主要型號有:LRB600-120、(16個)NRB600、(58個)P400(44個)
通常固定橡膠支座可設在橋墩或橋臺上,只要它能承受上部結構位移的反作用力,如果能夠在結構的中部選1個點來固定,那么由內部應力引起的作用在固定橡膠支座上的合力就為小。
一般有幾種方式:1)設置臨時承重結構作為平臺;利用原有墩臺作為基礎加設支撐作為平臺;超薄千斤頂;4)利用相鄰跨作為支撐在橋面起吊提梁;2加墊鋼板處理:這是目前建筑養護和施工過程中解決橡膠支座問題長用的方法。

(圖三)LRB1300橡膠隔震支座
降低房屋造價:由于隔震體系的上部結構承受的地震作用大幅度降低,使上部結構構件和節點的斷面、配筋減少,構造及施工簡單,大大節省造價。雖然隔震裝置需要增加造價(約5%).但建筑總造價仍可降低。從汕頭、廣州、西昌等地建造的隔震房屋得知,多層隔震房屋比傳統多層抗震房屋節省士建造價:7度區節省1%~3%;8度區節省5%~15%;9度區節省10%~20%,并且安全度人大提高。
橡膠支座要安裝在橋下,一定要設置的支承墊石,混凝土強度應符合設計要求,頂面要求標高準確,表面平整,在平坡情況下同一片梁兩端支承墊石水平面應盡量處于同一平面內,其相對誤差不得超過3MM,避免支座發生偏歪、不均勻受力和脫空現象。
1994年1月17日,美國洛杉磯大地震中,該市相距不遠的兩個醫院,一個是隔震的,地震時醫師護士照常工作,毫無問題;另一個是不隔震的,損壞厲害,一直無法恢復工作。
同時,要求相關單位及時派專業技術人員到場進行檢查,必要時制定隔震橡膠支座更換專項方案,報批后及時更換。
在支座中添加5201硅脂潤滑后,常溫型活動支座設計摩阻系數小取0.03.加5201硅脂潤滑后,耐寒型活動支座設計摩阻系數小取0.06。
本文簡單介紹了外隔震橡膠制品工程開發應用情況,以實例說明了橡膠隔震制品對建筑物減震的重要作用,概括了隔震體系影響建筑結構成本降低與增加的原因等,為隔震工程設計單位提供參考與依據。
建筑隔震橡膠支座檢驗分型式檢驗和出廠檢驗兩類。制造廠提供工程應用的隔震橡膠支座新產品(新種類、新規格、新型號)進行認證鑒定時,或已有支座產品的規格、型號、結構、材料、工藝方法等有較大改變時,應進行型式檢驗,并提供型式檢驗報告。隔震橡膠支座產品在使用前應由檢測部門進行質量控制試驗,檢驗合格并附合格證書,方可使用。參考《建筑隔震橡膠支座》JG/T118-2018,建筑隔震橡膠支座應進行出廠檢驗和型式檢驗。型式檢驗合格后方可進行生產。每個隔震橡膠支座均應進行出廠檢驗,出廠檢驗應由制造廠質檢部門或獨立的第三方檢測機構檢驗,檢驗合格方準出廠。、新產品的試制、定型、鑒定;、當原料、結構、工藝等有較大改變。
根據這些性能要求,板式橡膠支座在垂直方向應具有足夠的剛度,從而保證在大豎向荷載作用下支座產生較小的壓縮變形,一般要求支座的大壓縮變形不得超過橡膠厚度的橡膠支座在水平方向則應具有一定柔性,以適應車輛制動力、溫度、混凝土收縮和徐變及活載作用下梁體的水平位移。



















